
Chapter 9: Strategies of Computer Worms

" Worm: n., A self-replicating program able to propagate itself across network,
typically having a detrimental effect."

—Concise Oxford English Dictionary, Revised Tenth Edition
9.1 Introduction

This chapter discusses the generic (or at least "typical") structure of advanced
computer worms and the common strategies that computer worms use to invade
new target systems. Computer worms primarily replicate on networks, but they
represent a subclass of computer viruses. Interestingly enough, even in security
research communities, many people imply that computer worms are dramatically
different from computer viruses. In fact, even within CARO (Computer Antivirus
Researchers Organization), researchers do not share a common view about
what exactly can be classified as a "worm." We wish to share a common view,
but well, at least a few of us agree that all computer worms are ultimately
viruses1. Let me explain.

The network-oriented infection strategy is indeed a primary difference between
viruses and computer worms. Moreover, worms usually do not need to infect files
but propagate as standalone programs. Additionally, several worms can take
control of remote systems without any help from the users, usually exploiting a
vulnerability or set of vulnerabilities. These usual characteristics of computer
worms, however, do not always hold. Table 9.1 shows several well-known
threats.
Table 9.1 Well-Known Computer Worms and Their Infection Methods

Name / Discovered

Type

Infection

Execution Method

WM/ShareFun February 1997

Microsoft Mail dependent mailer

Word 6 and 7 documents

By user

Win/RedTeam January 1998

Injects outgoing mail to Eudora mailboxes

Infects Windows NE files

By user

W32/Ska@m (Happy99 worm) January 1999

32-bit Windows mailer worm

Infects WSOCK32.DLL (by inserting a little hook function)

By user

W97M/Melissa@mm March 1999

Word 97 mass-mailer worm

Infects other Word 97 documents

By user

VBS/LoveLetter@mm2 May 2000

Visual Basic Script mass-mailer worm

Overwrites other VBS files with itself

By user

W32/Nimda@mm September 2001

32-bit Windows mass-mailer worm

Infects 32-bit PE files

Exploits vulnerabilities to execute itself on target

Table 9.1 suggests that infection of file objects is a fairly common technique
among early, successful computer worms. According to one of the worm
definitions, a worm must be self-contained and spread whole, not depending on
attaching itself to a host file. However, this definition does not mean that worms
cannot act as file infector viruses in addition to network-based propagators.

Of course, many other worms, such as Morris3, Slapper4, CodeRed, Ramen,
Cheese5, Sadmind6, and Blaster, do not have file infection strategies but simply
infect new nodes over the network. Thus defense methods against worms must
focus on the protection of the network and the network-connected node.
9.2 The Generic Structure of Computer Worms

Each computer worm has a few essential components, such as the target locator
and the infection propagator modules, and a couple of other nonessential
modules, such as the remote control, update interface, life-cycle manager, and
payload routines.
9.2.1 Target Locator

To spread rapidly on the network, the worm needs to be able to find new targets.
Most worms search your system to discover e-mail addresses and simply send
copies of themselves to such addresses. This is convenient for attackers
because corporations typically need to allow e-mail messages across the
corporate firewalls, thereby allowing an easy penetration point for the worm.

Many worms deploy techniques to scan the network for nodes on the IP level and
even "fingerprint" the remote system to check whether such a system might be
vulnerable.
9.2.2 Infection Propagator

A very important component of the worm is the strategy the worm uses to
transfer itself to a new node and get control on the remote system. Most worms
assume that you have a certain kind of system, such as a Windows machine,
and send you a worm compatible with such systems. For example, the author of

the worm can use any script language, document format, and binary or in-
memory injected code (or a combination of these) to attack your system.
Typically, the attacker tricks the recipient into executing the worm based on
social engineering techniques. However, more and more worms deploy several
exploit modules to execute the worm automatically on the vulnerable remote
system without the user's help. Exploitation of vulnerabilities is the subject of
Chapter 10, "Exploits, Vulnerabilities, and Buffer Overflow Attacks."

 Note - Some mini-worms such as W32/Witty and W32/Slammer appear to
combine the target locator (network scan) and infection propagator in a single
function call. However, they still support distinct features: the generation of
random IP addresses and the propagation of the worm body to new targets.

9.2.3 Remote Control and Update Interface

Another important component of a worm is remote control using a
communication module. Without such a module, the worm's author cannot
control the worm network by sending control messages to the worm copies. Such
remote control can allow the attacker to use the worm as a DDoS (distributed
denial of service) tool7 on the zombie network against several unknown targets.

An update or plug-in interface is an important feature of advanced worms to
update the worm's code on an already-compromised system. A common problem
for the attacker is that after a system is compromised with a particular exploit, it
often cannot be exploited again with the same one. Such a problem helps the
attacker to avoid multiple infections of the same node, which could result in a
crash. However, the intruder can find many other ways to avoid multiple
infections.

The attacker is interested in changing the behavior of the worm and even
sending new infection strategies to as many compromised nodes as possible.
The quick introduction of new infection vectors is especially dangerous. For
example, the intruder can use a single exploit during the first 24 hours of the
outbreak and then introduce a set of others via the worm's update interface.
9.2.4 Life-Cycle Manager

Some worm writers prefer to run a version of a computer worm for a preset
period of time. For instance, the W32/Welchia.A worm "committed suicide" in
early 2004, and then the B variant of Welchia was released in late February of
2004 to run for three more months. On the other hand, many worms have bugs in
their life-cycle manager component and continue to run without ever stopping.
Furthermore, we often encounter variants of computer worms that were patched
by others to give the worm "endless" life.

Consider the statistics collected on an individual Welchia honeypot administered
by Frederic Perriot between August 2003 and February 2004, shown in Figure

9.1. The sudden drop of Welchia is related to its life-cycle manager, which
triggers the worm's self-killing routine.

Figure 9.1
The suicide of Welchia worm.

The cumulative number of distinct Welchia attacking systems was around 30,000
when the worm started to kill itself when observed on a particular DSL network
(see Figure 9.2).

Figure 9.2
The cumulative number of Welchia attackers.
9.2.5 Payload

Another optional but common component of a computer worm is the payload
(activation routine). In many cases, computer worms do not contain any payload.
An increasingly popular payload is a DoS attack against a particular Web site.
However, a common side effect of computer worms is accidental DoS attacks as
a result of overloaded networks, especially overloaded network routers8.
However, other interesting side effects have also been observed, such as
accidental attacks on network printers.

Computer worms also can utilize the compromised systems as a "super
computer." For example, W32/Opaserv9 attempts to break a DES-like10 secret
key11 by sharing the attack among the infected nodes, similarly to the SETI
network. (In fact, some computer worms, such as W32/Hyd, download and install
SETI to compromised systems. The W32/Bymer worm is an example of a
DNETC [Distributed Network Client] installation to compromised systems.) Such
attacks were first predicted in 198912.

Another interesting tendency is the planned interaction between two computer
worms as a payload. Several antiworms have been released with the intention of
killing other computer worms and installing patches against the vulnerabilities
they exploited. Examples include Linux/Lion versus Linux/Cheese and
W32/CodeRed versus W32/CodeGreen. In this chapter, I will also discuss other
kinds of interactions between malicious programs.

Recently it is becoming popular to install an SMTP (Simple Mail Transfer
Protocol) spam relay server as the payload of a worm. Spammers compromise
systems on a large scale using worms such as W32/Bobax and then using the
SMTP relay server created by the worm to spam messages from the "zombie"
systems.
9.2.6 Self-Tracking

Many computer virus authors are interested in seeing how many machines the
virus can infect. Alternatively, they want to allow others to track the path of the

virus infections. Several viruses, such as W97M/Groov.A13, upload the IP
information of the infected system to an FTP site.

Computer worms typically send the attacker an e-mail message with information
about the infected computer to track their spread. The Morris worm deployed a
self-tracking module that attempted to send a UDP datagram to the host at
ernie.berkeley.edu after approximately every 15 infections, but this routine was
bogus, and it never sent any information14. A few other examples of self-tracking
are mentioned later on in this chapter.
9.3 Target Locator

An efficient target locator module is an extremely important component of
computer worms. The easiest mechanism for the attacker is to collect e-mail
addresses on the system on which the worm was executed and to send
attachments to such targets, but there are many more sophisticated techniques
to reach new targets quickly, such as random construction of IP addresses in
combination with port scanning.

Modern computer worms also attack the network using several protocols. In this
section, I will summarize the most important attacks and network scanning
techniques.
9.3.1 E-Mail Address Harvesting

There are many ways in which a computer worm can collect e-mail addresses for
attacks. The attacker can enumerate various address books with standard APIs,
including COM interfaces15. An example of this is W32/Serot16.

Files can be enumerated directly to find e-mail addresses within them.
Additionally, sophisticated worms might use the NNTP (network news transfer
protocol) to read newsgroups or use search engines such as Google to collect e-
mail addresses using techniques similar to those that spam attackers use.
9.3.1.1 Address-Book Worms

All computer environments have some form of address book to store contact
information. For example, the Windows Address Book or the Outlook Address
Book might contain the e-mail addresses of your friends, colleagues, and clients,
or names of e-mail lists in which you participate. If a worm can query the e-mail
addresses stored in such locations, it can send itself to all of them and spread
with an exponential infection rate. Unfortunately, it is a rather trivial task to query
the information in such address books.

The W97M/Melissa@mm17 worm was especially successful with this technique
in March 1999. The worm depends on the Microsoft Outlook installation on the
system to propagate itself in e-mail by sending an infected Word document as an
attachment.
9.3.1.2 File Parsing Attacks on the Disk

Several computer worms such as W32/Magistr18 simply search for the e-mail
client's files or for all files with a WAB extension and parse such files directly for
e-mail addresses. This technique became popular after Microsoft introduced
security features in Outlook against computer worms that spread via e-mail
messages.

As you might expect, file parsing–based attacks have their own minor caveats.
For example, some worms have file format dependencies. The Windows Address
Book is not saved in the same format on all Windows versions. Unicode is not
always supported, and the file format is different in this case. This is why such
worms cannot spread to other systems in such a situation. Problems like this can
be extremely disturbing during natural infection tests in lab environments. It is an
example of Murphy's Law when the whole world is infected with a particular
worm—which fails to work in the lab environment.

Nevertheless, the technique seems to be efficient in the real world, and many
successful worm attacks are the proof. For example, the W32/Mydoom@mm
worm became extremely widespread in early 2004. Mydoom parsed files for e-
mails with the following extensions: htm, sht, php, asp, dbx, tbb, adb, pl, wab,
and txt.

Computer worms use heuristics to figure out whether a particular string is a
possible e-mail address. One possible heuristic is to look for mailto: strings in
HTML files and assume it is followed by an e-mail address. Occasionally, the
size of the domain name is limited. For example, somebody@a.com might not be
accepted by worms such as W32/Klez.H as a valid e-mail address, because
"a.com" is too short to be good (although someone might configure a local
network using such domain name). In addition, some worms target recipients
with a specific language such as Hungarian and, to trick the user to execute the
worm, they check the TLD (top-level domain) of e-mail addresses as suggested.
For example, the Zafi.A worm sends itself to e-mail addresses that have ".hu"
(Hungarian) as their TLD19.

Sircam worm20 searches for e-mail addresses in Internet Explorer's Cache
directory, the user's Personal directory, and the directory that contains the
Windows Address Books (referred to by HKCU\Software\Microsoft\WAB\
WAB4\Wab File Name in the Registry) in files whose names begins with sho, get,
or hot, or whose suffix is HTM or WAB.
9.3.1.3 NNTP-Based E-Mail Collectors

Attackers have long introduced their creations in Internet newsgroups. In 1996
the abuse of the News Net became very intense. As a result, researchers of the
Dr. Solomon antivirus team decided to create a service called Virus Patrol21 to
scan Usenet messages for known and possibly unknown malware that was

continuously planted in such messages. Virus Patrol was introduced in
December 1996.

NNTP can be used in a number of malicious ways. For example, an attacker
might be able to use a news server reader to build a large local database with the
e-mail addresses of millions of people. The attacker can use this database to
help the initial fast propagation of the worm by running the worm on a system
that hosts the database.

This is a common technique of spammers, and it is suspected that worms such
as the W32/Sobig family were populated using such techniques. The newsgroup-
based e-mail collector is not entirely unknown in Win32 viruses. In fact, the very
first known Win32 virus that used e-mail to propagate itself used an NNTP
collector. W32/Parvo22 was introduced by the infamous virus writer GriYo of the
29A group in late 1998. Not surprisingly, just like many other GriYo viruses,
Parvo also used polymorphism to infect PE files, but it also became the first virus
to integrate an SMTP mass-mailing engine. Parvo was years ahead of its time,
written in pure Assembly resulting in a 15KB virus body.

W32/Parvo used several newsgroups to collect e-mail addresses, but apparently
a minor problem limited its spread. Parvo randomly tried to connect to two
possible news servers: talia.ibernet.es or diana.ibernet.es. These servers,
however, were not available to everyone at the time. Thus Parvo's newsgroup-
based e-mail collector was limited to work "inside the borders" of Spain.

Parvo connects on port 119/TCP (NNTP) to one of the preceding servers and
starts to communicate. The attacker prepared three different e-mail messages
with content that he expected to be catchy enough for the selected audiences of
three different newsgroups.

Parvo's first message targets frequent readers of hacking-related newsgroups,
such as alt.bio.hackers, alt.hacker, alt.hackers, alt.hackers.malicious, and so on.
The second message is sent to a subset of this newsgroup list. Finally, the third
message targeted visitors to erotic newsgroups, such as alt.binaries.erotica,
alt.binaries.erotica.pornstar, and so on.

To find e-mail addresses in newsgroups, Parvo uses the group command to join
to a group randomly and then uses the head and next commands a random
number of times to pick a message randomly. Finally, it extracts the e-mail
address from the header of the randomly selected message, sends itself in e-
mail to the target, and repeats the process.
9.3.1.4 E-Mail Address Harvesting on the Web

Attackers also can search for e-mail addresses using search engines. This is a
relatively simple task that can help the attacker gain quick access to a large
number of e-mails. As I was writing this book, the first such worms appeared that

utilized popular search engines such as Google, Lycos, Yahoo!, and Altavista to
harvest e-mail addresses. For example, the W32/Mydoom.M@mm worm used
this technique successfully, and according to Google, it caused minor DoS
attacks against its servers.
9.3.1.5 E-Mail Address Harvesting via ICQ

Some computer worms, such as the polymorphic W32/Toal@mm23, harvests e-
mail addresses using ICQ (I Seek You) white pages located on ICQ servers. For
example, http://www.icq.com/whitepages/ allows you to make searches for
contacts according to various characteristics such as name, nickname, gender,
age, and country in any combinations and retrieve contact information, such as
e-mail addresses, to people who meet your search criteria. Not surprisingly,
computer worms can get an advantage of the information provided.
9.3.1.6 Monitoring User Access to SMTP and Newsgroups on the Fly

Alternatively, a computer worm can capture e-mail addresses from outgoing
messages. Even if a particular e-mail address is not saved anywhere on the
system, when the user sends a message to a particular address, the worm can
send a message to the same address. The Happy9924 worm was the first to use
this method. Happy99 sends two messages that look similar to the example
shown in Figure 9.3. Note the X-Spanska: Yes in the header. This is a self-
tracking method that was used by the worm's author. SMTP servers simply
ignore commands that begin with the "X" prefix.

Date: Fri, 26 Feb 1999 09:11:40 +0100 (CET)
From: "XYZ" <xyz@xyz.cz>
To: <samples@datafellows.com>
Subject: VIRUS
X-Spanska: Yes

Figure 9.3
The header section of an e-mail sent by Happy99.

(Message contains UU-encoded Attachment.)

The original message is shown in Figure 9.4.

From: "XYZ" <xyz@xyz.cz>
To: <samples@datafellows.com>
Subject: VIRUS
Date: Fri, 26 Feb 1999 09:13:51 +0100
X-MSMail-Priority: Normal

X-MimeOLE: Produced By Microsoft MimeOLE V4.72.3110.3

Figure 9.4

The message of the user is also sent by Happy99.

The body of the extra mail contains a UU-encoded executable called
happy99.exe. When the user executes the attached program, the worm's code is
activated.

Happy99 looks for two API names in the WSOCK32.DLL export section. This
DLL is the Windows Socket communication library used by many networked
applications, including several popular e-mail clients. The worm patches the
export address entries of the connect() and send() APIs to point to new entries at
the end of the .text section (the slack space) of WSOCK32.DLL.

When the patched DLL is loaded in memory as a client library to a networked
application, the worm intercepts the connect() and send() APIs. Whenever the
user makes a connection, Happy99 checks the used ports. If the port turns out to
be for mail or news access, a new DLL, SKA.DLL, is loaded into the process
address space, which contains the worm's complete code previously saved on
the disk.

When the intercepted send() API is called, the worm again checks whether this
event is related to newsgroups or mail. If so, it copies some part of the original e-
mail header, paying attention to MAIL FROM:, TO:, CC, BCC, and
NEWSGROUPS: keywords in the header of the e-mail. Finally, it adds the X-
Spanska: YES string to the mail header. Several other worms use an approach
similar to Happy99's. Some of these worms inject their complete code into the
WSOCK32 library.
9.3.1.7 Combined Methods

Of course, there can be many variations of e-mail address harvesting and worm
propagation. For example, the Linux/Slapper worm3 is capable of harvesting e-
mail addresses and providing them to the attacker based on his request via a
remote-control interface. Then another worm might be created by the attacker to
use the database of harvested e-mail addresses to propagate to a large number
of machines very rapidly—without requiring a large set of initial infections to
harvest an efficient number of e-mail addresses. Even more likely, the attacker
can use the collected e-mail addresses to spam targets.
9.3.2 Network Share Enumeration Attacks

Probably the simplest method to find other nodes on the network quickly is to
enumerate the network for remote systems. Windows systems are especially
vulnerable to such attacks because of their rich support for finding other
machines with simple interfaces. Computer viruses such as W32/Funlove used
the enumeration principle to infect files on remote targets. These attacks caused
major outbreaks at large corporations around the world.

Several computer worms have minor implementation problems and become
overly successful at finding networked resources, including shared network
printer resources. This happens because not all worms pay attention to the type
of resources they enumerate, which can lead to accidental printing on the
network printers. Indeed, bogus worms print random-looking binary garbage on
the printer, which is in fact the code of the worm. W32/Bugbear and W32/Wangy
are examples of computer worms that accidentally target network printers with
such an attack.

The success of this kind of worm usually depends on the trusted relationship
between systems. However, there are additional contributors:

 *

 Blank passwords: Many default installations of systems are vulnerable to
attacks because they do not have a default password set for administrative-level
access on shared resources.
 *

 Weak passwords—dictionary attacks: Weak passwords were a target of
computer worms as early as 1988, starting with the Morris worm. However,
password dictionary attacks on Windows systems did not become popular until
2003, with the sudden outbreak of worms like BAT/Mumu. Surprisingly, Mumu
carried a relatively short password list that includes password, passwd, admin,
pass, 123, 1234, 12345, 123456, and a blank password. Most likely, its success
is related to the blank passwords on administrator accounts.
 *

 Vulnerabilities related to the handling of passwords: The W32/Opaserv worm
appeared in September of 2002 and became infamous for its attacks against
systems that were otherwise protected with strong passwords, but that shared
network resources on vulnerable Windows installations. Specifically, Opaserv
exploited the vulnerability described in the MS00-072 security bulletin, which
affected Microsoft Windows 95/98 and Me systems. This vulnerability, known as
the share-level password vulnerability, allows access to network shares using the
first character of the password, no matter how long the password is. The number
of systems that share network resources on the Internet without being protected
by a personal firewall is overwhelming, which allows Opaserv easy access to
writeable shared resources.
 *

 Password-capturing attacks to gain domain administrator-level rights: In
Windows networks, domain administrators have the right to read and write any
files on any Windows machine on the network, unless specifically forbidden. On
NT-based systems, domain administrators can also remotely execute programs

on the fly and execute commands that require higher privilege levels than those
of a regular user on the network.

These features make remote management possible, but at the same time they
open up a whole new set of security problems. Gaining domain administrator
rights is not trivial. However, a worm could do this easily if given enough time. A
worm could spread through traditional channels, constantly sniffing the local
network segment with traditional TCP/IP sniffing techniques. After detecting the
domain administrator credentials being transferred in the network segment (for
example, because the administrator is logging on from a nearby workstation), it
logs the domain administrator's username and password hash.

NT-based networks do not broadcast the password in plain text; they run it
through a one-way hash function first. The function cannot be reversed, so the
password cannot be gathered directly from the hash. Instead, the worm could
execute a brute-force attack to exhaust every possible password combination. It
could run every password (A, AA, AAA, AAAA, and so on) through the same one-
way function and compare the result. If they match, the password has been
found. Alternatively, the worm could use a dictionary attack to find passwords as
well.

With a strong password, this process might take days to accomplish, but a typical
NT password takes less than a week to crack on a typical Windows workstation
from a single Pentium system. Assuming that the worm could communicate with
other compromised nodes, it could introduce workload balancing between the
compromised nodes to share the work, making the cracking process even faster.

After the worm has cracked the NT domain administrator password, it owns the
network and can do anything. Specifically, it can copy itself to any other Windows
machine in the network. On NT-based machines, it can even start itself
automatically with high access rights. Such a worm could also change the
domain administrator password and the local administrator passwords to make
itself more difficult to stop.

We first projected the feasibility of such attacks on NT domains with Mikko
Hypponen back in 1997. At about the same time, tools such as L0phtCrack
appeared to fulfill the sniffing and breaking of password hashes on NT domains.
The authors of L0phtCrack demonstrated that long passwords can be often
weaker than short ones when challenged with dictionary attacks25.

In fact, the hashing algorithm of passwords on NT domains splits long passwords
to seven character chunks, helping L0phtCrack crack the password more quickly.
Nevertheless, computer worms with built-in network sniffing to crack passwords
have not been discovered so far. Secure your passwords now—before it is too
late! (Of course, this advice might not be funded very well when you consider a

computer worm with a built-in keylogger to capture user accounts and passwords
to attack other systems.)
9.3.3 Network Scanning and Target Fingerprinting

Several computer worms construct random IP addresses to attack other nodes
on the network. By analyzing the scanning algorithm of the worm, someone
might be able to make predictions about the worm's propagation speed on the
network.

Evidently, an attacker can scan the entire Internet from a single machine,
building IP addresses in a sequential manner (such as 3.1.1.1, 3.1.1.2, 3.1.1.3,
and so on) and carefully ignoring invalid IP address ranges. This technique
allows the attacker to build a "hit list" (database of IP addresses) to systems that
might be vulnerable against a particular attack. To do that, the attacker typically
fingerprints the remote systems just enough to suspect that the target may be
vulnerable. In many cases, the fingerprinting is strongly related to a successful
exploitation.

The hit list method is one of the theoretical backgrounds for so-called Warhol
worms26. Warhol worms can infect 90% of all vulnerable systems on the entire
Internet in less than 15 minutes. (It is expected that IPv6 will force computer
worms to switch from traditional scanning methods to "hit list" techniques in the
future.)
9.3.3.1 Scanning Using a Predefined Class Table: The Linux/Slapper Worm

Network worms can also scan for remote systems, generating random IP
addresses but using a predefined table of network classes. For example, the
Linux/Slapper worm uses the classes as defined in Listing 9.1 to attack possibly
vulnerable Apache systems running on Linux:
Listing 9.1 The Class Definitions of the Linux/Slapper Worm

unsigned char classes[] = { 3, 4, 6, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 24,
25, 26, 28, 29, 30, 32, 33, 34, 35, 38, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
53, 54, 55,
56, 57, 61, 62, 63, 64, 65, 66, 67, 68, 80, 81, 128, 129, 130, 131, 132, 133, 134,
135, 136,
137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152,
153, 154, 155,
156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171,
172, 173, 174,
175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190,
191, 192, 193,
194, 195, 196, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210,
211, 212, 213,

214, 215, 216, 217, 218, 219, 220, 224, 225, 226, 227, 228, 229, 230, 231, 232,
233, 234, 235,
236, 237, 238, 239 };

 Note - I picked the name for Linux/Slapper worm when we discovered it in
September 2002. I chose the name based on Slapper's similarity to the
BSD/Scalper worm's code. The Scalper worm attacked Apache systems with the
scalp exploit code—hence my name selection for this creature, after we had
discovered it.

The preceding classes do not have some of the class A-sized, local networks,
such as 10, or many other IP address ranges, including invalid classes. The
worm builds the base IP address of the target machine as shown in Listing 9.2.
Listing 9.2 The Randomized IP Address Builder Routine of Linux/Slapper

a=classes[rand()%(sizeof classes)];
b=rand();
c=0;
d=0;

The attack will start with an address such as 199.8.0.0, and the worm will scan
up the entire range of network nodes. Slapper attempts to connect on port 80
(HTTP) in order to fingerprint the remote system. It does so by sending a bogus
HTTP request on port 80 that is missing the Host: header (which is required in
HTTP/1.1) as shown in Listing 9.3.
Listing 9.3 The Bogus GET Request of Linux/Slapper

GET / HTTP/1.1\r\n\r\n

The worm expects that Apache Web servers return an error message to this
request; Apache returns the message shown in Listing 9.4 to the attacker node:
Listing 9.4 Apache Web Server's Answer

HTTP/1.1 400 Bad Request
Date: Mon, 23 Feb 2004 23:43:42 GMT
Server: Apache/1.3.19 (UNIX) (Red-Hat/Linux) mod_ssl/2.8.1
OpenSSL/0.9.6 DAV/1.0.2 PHP/4.0.4pl1 mod_perl/1.24_01
Connection: close
Transfer-Encoding: chunked
Content-Type: text/html; charset=iso-8859-1

Note the Server: Apache keywords in the error message. The returned data also
has information about the actual version number of the Web server, which is
1.3.19 in this example.

The worm checks whether the error message is coming from an Apache server
by matching the server information. Then it uses a table filled with architecture
and version information numbers (shown in Listing 9.5) to see if the target is
compatible with the attack.
Listing 9.5 The Architectural Structure of Slapper

struct archs {
char *os;
char *apache;
int func_addr;

} architectures[] = {
{"Gentoo", "", 0x08086c34},
{"Debian", "1.3.26", 0x080863cc},
{"Red-Hat", "1.3.6", 0x080707ec},
{"Red-Hat", "1.3.9", 0x0808ccc4},
{"Red-Hat", "1.3.12", 0x0808f614},
{"Red-Hat", "1.3.12", 0x0809251c},
{"Red-Hat", "1.3.19", 0x0809af8c},

{"Red-Hat", "1.3.20", 0x080994d4},
{"Red-Hat", "1.3.26", 0x08161c14},
{"Red-Hat", "1.3.23", 0x0808528c},
{"Red-Hat", "1.3.22", 0x0808400c},
{"SuSE", "1.3.12", 0x0809f54c},
{"SuSE", "1.3.17", 0x08099984},
{"SuSE", "1.3.19", 0x08099ec8},
{"SuSE", "1.3.20", 0x08099da8},
{"SuSE", "1.3.23", 0x08086168},
{"SuSE", "1.3.23", 0x080861c8},
{"Mandrake", "1.3.14", 0x0809d6c4},
{"Mandrake", "1.3.19", 0x0809ea98},
{"Mandrake", "1.3.20", 0x0809e97c},
{"Mandrake", "1.3.23", 0x08086580},
{"Slackware", "1.3.26", 0x083d37fc},
{"Slackware", "1.3.26", 0x080b2100}

};

The attacker knows that the remote system runs Apache on a system that is
likely to be compatible with the exploit code of the worm (assuming that the
system is not patched yet). The third value is a "magic" address related to the
exploit code. The magic number is explained in Chapter 10. In this example, the
worm will select the 0x0809af8c address using the Red Hat and 1.3.19
architecture and version information. (See the bold line in the preceding
structure.)
9.3.3.2 Randomized Scanning: The W32/Slammer Worm

So far, the Slammer worm has been responsible for the quickest worm outbreak
in history. Slammer attacks UDP port 1434 (SQL server) and does not bother to
check whether the IP address is valid. It simply generates completely random IP
addresses and sends a packet to each target. (See Table 9.2 for an illustration.)
Table 9.2 A Sample Scan of the Slammer Worm

Time

Attacked IP Address:Port

0.00049448

186.63.210.15:1434

0.00110433

73.224.212.240:1434

0.00167424

156.250.31.226:1434

0.00227515

163.183.53.80:1434

0.00575352

142.92.63.3:1434

0.00600663

205.217.177.104:1434

0.00617341

16.30.92.25:1434

0.00633991

71.29.72.14:1434

0.00650697

162.187.243.220:1434

0.00667403

145.12.18.226:1434

0.00689780

196.149.3.211:1434

0.00706486

43.134.57.196:1434

0.00723192

246.16.168.21:1434

0.00734088

149.92.155.30:1434

0.00750710

184.181.180.134:1434

0.00767332

79.246.126.21:1434

0.00783926

138.80.13.228:1434

0.00800521

217.237.10.87:1434

0.00817112

236.17.200.51:1434

Slammer appears to be one of the quickest possible attacks on the Internet, but
researchers predict that some worm types in the future will spread even faster.
Slammer's infection was observed almost simultaneously all around the world
and does not need to use any fingerprinting. It counts on the "sure shot" against
vulnerable targets, which will continue the infection of other nodes as fireworks.
9.3.3.3 Combined Scanning Methods: The W32/Welchia Worm

The Welchia worm uses an IP address generator engine similar to Slapper's;
however, it uses a combination of methods:

 *

 Welchia scans class B–sized networks near the host's class-B network. It
does so by scanning either the exact class B–sized network or slightly above or
below, in hopes that such nearby systems also might be vulnerable to the same
exploits.
 *

 The worm uses a hit list for class A–sized networks. The attacker expects
that these systems will have more vulnerable targets. This method also uses a
randomized scanning strategy by attacking 65,536 random IP addresses.

Before Welchia proceeds with its exploits, it checks the availability of the remote
system with ICMP echo requests (pings).
9.4 Infection Propagators

This section summarizes interesting techniques that computer worms use to
propagate themselves to new systems.
9.4.1 Attacking Backdoor-Compromised Systems

Although most computer worms do not intentionally attack an already
compromised system, some computer worms use other backdoor interfaces to

propagate themselves. The W32/Borm worm was among the first computer
worms to attack a backdoor-compromised remote system. W32/Borm cannot
infect any other systems than those already compromised with Back Orifice (a
fairly popular backdoor among attackers). Back Orifice supports a remote
command interface that uses an encrypted channel between a client and the
Back Orifice server installed on the compromised system. Borm utilizes a
network-scanning and fingerprinting function to locate Back Orifice–compromised
systems. See Figure 9.5 for illustration.

Figure 9.5
W32/Borm uses Back Orifice to propagate itself.

The worm attacks a compromised system using the following simple steps:

 1.

 It randomly generates an IP address and actively scans using Back Orifice's
BO_PING command to see whether the remote system is compromised. To
initiate any meaningful communication, the worm needs to know Back Orifice's
magic password, which is *!*QWTY?. The header of the communication data is
encrypted with simple encryption, which is required by the Back Orifice server.
Borm properly encrypts the data before it sends it to the randomly generated IP
address on port 31337/UDP used by Back Orifice. If the remote node answers
the BO_PING command, the worm proceeds to the next step. Otherwise, it
generates other IP addresses to attack.
 2.

 Borm sends a BO_HTTP_ENABLE command to the server.
 3.

 In turn, this command instructs Back Orifice to create a virtual HTTP server
on the compromised host. The worm instructs Back Orifice to use port
12345/TCP to establish an HTTP proxy on the compromised system.
 4.

 Next, the worm connects and uploads itself in MIME-encoded format to the
server.
 5.

 Finally, the worm runs the uploaded executable on the server by sending a
BO_PROCESS_SPAWN command. This will run the worm on the remote
machine so it can start to scan for other Back Orifice systems from the newly
infected node.

W32/Borm was among a flurry of computer worms that appeared in 2001. Other
worms that utilized backdoor interfaces in this time frame included Nimda, which

took advantage of a backdoor that was previously opened by a CodeRed II
infection, and the W32/Leaves worm, which got in the wild by attacking
SubSeven Trojan-compromised systems.

Borm was a creation of the Brazilian virus writer, Vecna. Several other of his
methods are discussed later in this chapter.
9.4.2 Peer-to-Peer Network Attacks

Peer-to-peer attacks are an increasingly popular computer worm technique that
not require advanced scanning methods on the computer network. Instead, such
worms simply make a copy of themselves to a shared P2P folder on the disk.
Anything that is available in a P2P download folder is searchable by other users
on the P2P network.

In fact, some computer worms even create the shared folder in case the user
only wants to search the P2P network for content instead of sharing similar
content with others. Although this attack is similar to a Trojan installation, rather
than recursive propagation, users of the P2P network will find the network-shared
content easily and run the malicious code on their systems to complete the
infection cycle. Some P2P worms, such as W32/Maax, will infect files in the P2P
folder. The most common infection technique is the overwriting method, but
prepender and even appender infections have also been seen.

P2P clients such as KaZaA, KaZaA Lite, Limewire, Morpheus, Grokster,
BearShare, and Edonkey among others are common targets of malicious code.
P2P networks are an increasingly popular way to exchange digital music; they
are hard to regulate because they are not centralized.
9.4.3 Instant Messaging Attacks

Instant messaging attacks originated in the abuse of the mIRC /DCC Send
command. This command can be used to send a file to users connected to a
particular discussion channel. Normally, attackers modify a local script file, such
as script.ini used by mIRC to instruct the instant messaging client to send a file to
a recipient any time a new participant joins a discussion.

Modern implementations of IRC (Internet Relay Chat) worms can connect
dynamically to an IRC client and send messages that trick the recipient into
executing a link or an attachment. In this way, the attacker can avoid modifying
any local files.

For example, the W32/Choke worm uses the MSN Messenger API to send itself
to other instant messaging participants as a "shooter game"27. Although several
instant messenger software programs require the user to click a button to send a
file, worms can enumerate the dialog boxes and "click" the button, so the actual
user does not have to click. It is also expected that computer worms will exploit
buffer overflow vulnerabilities in instant messenger software. For example,

certain versions of AOL Instant Messenger software allow remote execution of
arbitrary code via a long argument in a game request function28.
9.4.4 E-Mail Worm Attacks and Deception Techniques

The vast majority of computer worms use e-mail to propagate themselves to
other systems. It is interesting to see how attackers trick users every day, asking
them to execute unknown code on their systems by sending them malicious code
in e-mail. Let's face it: This is one of the greatest problems of security. How can
security experts protect users from themselves?

During the last several years, an increasing number of users have been trapped
in a "Matrix" of operating systems, such as Windows. Windows especially gives
the illusion to millions of computer users worldwide that they are masters of their
computers—not slaves to them. This illusion leads to neglected security
practices. In fact, most users do not know that they need to be careful with e-mail
attachments. Consider W97M/Melissa, which used the following e-mail to trick
recipients into executing the worm on their machines:

"Here is that document you asked for ... don't show anyone else ;-)"

Another common method of deception is forging e-mail headers. For example,
the attacker might use the e-mail address of Microsoft's support as the
W32/Parvo virus does, placing support@microsoft.com as a sender of the
message. This can easily trick users into trusting an attachment and opening it
without thinking. Other computers worms, such as W32/Hyd, wait until the user
receives a message and quickly answers it by sending a copy of the worm back
to the sender. Not surprisingly, this can be a very effective deception method.

Worms also make minor changes in the From: field to change the sender's e-mail
randomly to something bogus. In practice, you might receive e-mail messages
from many people, and most of the time they have nothing to do with the worm
that abused their e-mail address. The bottom line is that notifying "the sender"
will not necessarily help.
9.4.5 E-Mail Attachment Inserters

Some computer worms insert messages directly into the mailboxes of e-mail
clients. In this way, the worm does not need to send the message; it simply relies
on the e-mail client to send the mail. The earliest example of computer worms on
Windows systems were of this type. An example of this is Win/Redteam, which
targets outgoing mailboxes of the Eudora e-mail client.
9.4.6 SMTP Proxy–Based Attacks

W32/Taripox@mm29 is an example of a tricky worm that acts as an SMTP
(simple mail transfer protocol) proxy. This worm appeared in February of 2002.
Taripox attacks the %WINDOWS %\SYSTEM32\DRIVERS\ETC\HOSTS file to

proxy mail traffic to itself. Normally, the HOSTS file has a simple definition for the
localhost address as shown in Listing 9.6.
Listing 9.6 The Content of a Typical Host's Configuration File

127.0.0.1 localhost

W32/Taripox remaps the IP address of the SMTP server to the local host. The
worm can listen on port 25 (SMTP) and wait for any SMTP e-mail client to
connect. The outgoing e-mail message is then forwarded to the real SMTP
server, but first the worm injects its own MIME-encoded attachment. The worm
also tricks users with comment entries in the host file such as "# Leave this
untouched," which is used for the localhost entry, and "# do not remove!," which
is used as the comment for the SMTP IP address to localhost redirection entry.
Figure 9.6 illustrates how Taripox works.

The HOSTS file is a common target for Retro worms to deny access to the Web
sites of antivirus and security companies. Taripox's attack is similar to
Happy99's, but it is a much simpler technique and does not require complicated
modifications to binary files like WSOCK32.DLL.

Figure 9.6
The W32/Taripox worm uses an SMTP proxy.
9.4.7 SMTP Attacks

As Microsoft strengthened Outlook's security to protect end users better against
worm attacks, computer worm authors quickly started to use more and more
SMTP-based attacks.

The first such major worldwide outbreak was caused by the Sircam20 worm in
July 2001 and was followed by the infamous W32/Nimda worm in September
2001. Smaller outbreaks had signaled the problem earlier, with the in-the-wild
appearance of W32/ExploreZip in June 1999.

Sircam avoids relying on an e-mail program by getting the SMTP information
directly from the Registry. This information consists of the following keys, which
are created and used by a number of Microsoft mail applications:

 *

 The current user's e-mail address: HKCU\Software\Microsoft\Internet
Account Manager\Default Mail Account\Accounts\SMTP Email Address
 *

 The address of the e-mail server: HKCU\Software\Microsoft\Internet Account
Manager\Default Mail Account\Accounts\SMTP Server
 *

 The user's display name: HKCU\Software\Microsoft\Internet Account
Manager\Default Mail Account\Accounts\SMTP Display Name

If, for some reason, this information does not exist, Sircam will use
prodigy.net.mx as the e-mail server, and the user's logon name as the e-mail
address and display name. Using a hard-coded list of SMTP IP addresses is a
common technique for computer worms, but usually this trick quickly overloads
the particular set of servers once the worm is sufficiently widespread. Typically,
such worms take off their SMTP servers with a DoS attack very quickly.

Thanks to implementation mistakes and bugs, it took a little while before SMTP
worms could take their real place. Before Sircam, most worms lacked some
important detail in their spreading mechanism. For instance, Magistr18 often
sends clean files or files that are infected but that reference some libraries not
available on the recipient's system, so they fail to penetrate the target.

To illustrate the simplicity of SMTP, consider Table 9.3.
Table 9.3 A Typical SMTP Communication Between a Client and a Server

1.) Client Connects to Server

2.) Server sends 220

3.) HELO name.com – says hi to the server

4.) Server sends 250

5.) MAIL FROM: <sender name>

6.) Server sends 250

7.) RCPT TO: <recipient name>

8.) Server sends 250

9.) DATA

10.) Server sends 354

11.) Body of the e-mail
Subject: <Any subject>

(ENCODED ATTACHMENT FOLLOWS)
. – dot to terminate

12.) Server sends 250

13.) QUIT - to say goodbye to the server

14.) Server sends 221

At this point, the e-mail might be dropped into a folder with a temporary name on
the server in EML (Electronic Mail List) format. For example, Figure 9.7 shows an
e-mail message sent by the W32/Aliz worm that was stored in the mail drop
folder of Microsoft IIS Server.

Figure 9.7
An e-mail message of the W32/Aliz worm.

This snippet already reveals the Content-Type exploit in the body of the e-mail,
which will be discussed in more detail in Chapter 10. Chapter 15, "Malicious
Code Analysis Techniques," also shows a network-level capture of W32/Aliz as
an illustration of analysis techniques.
9.4.8 SMTP Propagation on Steroids Using MX Queries

Worms such as Nimda, Klez, Sobig, and Mydoom perfected SMTP mass-mailing
by utilizing automated SMTP server address resolution using MX (eMail
eXchanger) record lookups via the DNS (Domain Name System). Such worms
check the domain name of the e-mail addresses they have harvested and obtain
a valid SMTP server for that domain. Mydoom even uses the backup SMTP
server addresses, instead of the primary server IP address, to reduce the load on
SMTP servers further.

Table 9.4 is a list of MX look-ups of Mydoom on a test machine. The worm
immediately sends itself to systems that it can find correctly, doing so many times
per minute. In Table 9.4, the first column is the time in seconds, the second

column is the infected system's IP address, and the third column shows the IP
address of the DNS server used to make MX lookups.
Table 9.4 DNS Queries of the Mydoom Worm

Time

Workstation IP

DNS IP

Query Type

Queried Value

5.201889

192.168.0.1

->

192.168.0.3

DNS Standard query

MX dclf.npl.co.uk

5.450294

192.168.0.1

->

192.168.0.3

DNS Standard query

MX frec.bull.fr

6.651133

192.168.0.1

->

192.168.0.3

DNS Standard query

MX csc.liv.ac.uk

18.036855

192.168.0.1

->

192.168.0.3

DNS Standard query

MX esrf.fr

19.721399

192.168.0.1

->

192.168.0.3

DNS Standard query

MX welcom.gen.nz

30.761329

192.168.0.1

->

192.168.0.3

DNS Standard query

MX t-online.de

32.213049

192.168.0.1

->

192.168.0.3

DNS Standard query

MX welcom.gen.nz

32.447161

192.168.0.1

->

192.168.0.3

DNS Standard query

MX geocities.com

9.4.9 NNTP (Network News Transfer Protocol) Attacks

Worms such as Happy99 can mail themselves to newsgroups as well as to e-
mail addresses. Usenet attacks can further enhance the spreadability of
computer worms. Interestingly, most computer worms will only send mail directly
to e-mail addresses.
9.5 Common Worm Code Transfer and Execution Techniques

Computer worms also differ how they propagate the worm's code from one
system to another. Most computer worms simply propagate their main body as
an attachment in an e-mail. However, other types of worms utilize different
methods, such as injected code and shellcode techniques in conjunction with
exploit code, to attack another system.
9.5.1 Executable Code–Based Attacks

E-mail can be encoded in various ways, such as UU, BASE64 (MIME), and so
on. However, the UU-encoded attachments are not very reliable over the Internet
because UU uses some special characters whose interpretation depends on the
context. Nowadays, most e-mail clients use MIME-encoded attachments by
default—and that is how most e-mail worms' SMTP client engines transfer
themselves to new targets. Script e-mail worms usually send attachments
encoded according to the settings of the e-mail client on the compromised
system.
9.5.2 Links to Web Sites or Web Proxies

Computer worms also can send links to executables hosted elsewhere, such as
a single Web site, a set of Web sites, or an FTP location. The actual message on

IRC or in e-mail might not have any malicious content in it directly—but infects
indirectly. One problem with this kind of attack is the possibility of an accidental
DoS attack against the system that hosts the worm's code. Another potential
pitfall is that the defender can easily contact Internet service providers to request
they disconnect such sites, preventing further propagation of the computer worm.

Tricky worms send links with the IP address of an already compromised system.
First, the worm compromises a machine and opens a crude Web server on the
system. Then it sends messages to other users, using the IP address of the
machine with the port on which the worm itself is listening for a GET request. In
this way, the worm attack becomes peer-to-peer, as Figure 9.8 illustrates. Such
computer worms might be able to bypass content filtering easily if the content-
filtering rule is based on attachment filtering.

Figure 9.8
Tricky worms send links in e-mails instead of their own copy.

W32/Beagle.T used a similar method in March 2004. This variant of Beagle
opens a crude Web server on TCP port 81. Then it sends a link to the recipient
that triggers automated downloading with an HTML-based mail (which exploits
the Microsoft Internet Explorer object tag vulnerability described in the MS03-032
bulletin) to download and execute the hosted worm executable on the target
automatically.

The W32/Aplore worm was among the first worms to use this attack to propagate
itself on Instant Messaging in April 2002. When the W32/Aplore@mm30 worm
arrives on a new system, it acts as a crude local Web server on port 8180,
hosting a Web page that instructs the user to download and run a program,
which is the worm body itself. The worm tricks Instant Messenger users by
sending them a link that looks like the following:

FREE PORN: http://free:porn@192.168.0.1:8180

where the IP address is the address of an infected system.
9.5.3 HTML-Based Mail

The e-mail can even be HTML mail-based. Disabling HTML support in your e-
mail client reduces your chance of exposure to at least some of these threats,
such as VBS/Bubbleboy. This worm is described in Chapter 10.
9.5.4 Remote Login-Based Attacks

On UNIX-like systems, commands such as rsh, rlogin, rcp, and rexec can be
used directly by computer worms. Using such commands, worms can execute
themselves on remote systems if the attacked system is not secured or if the
password is guessed with a dictionary attack or similar method. Usually, such

worms make a copy of their code directly to the remote system and execute
themselves via the remote execution facilities.

On Windows systems, worms like JS/Spida can take advantage of vulnerable
Microsoft SQL servers. Spida scans for remote Microsoft SQL server systems on
port 1433 and tries to execute itself remotely with the following assumptions:

 *

 The Microsoft SQL server runs in Administrative mode.
 *

 The "sa" Microsoft SQL server account has no password set.

The worm takes advantage of the xp_cmdshell function to execute system
commands to run the worm on the remote machine.
9.5.5 Code Injection Attacks

A more advanced attack requires exploitation of a target with direct code injection
over the network. As traditional buffer overflows are getting more difficult to
exploit, attackers are increasingly interested in exploiting server-side
vulnerabilities related to a lack of input validation. For example, the Perl/Santy
worm utilizes Google to find vulnerable Web sites and runs its own Perl script via
a vulnerability in the phpBB bulletin board software. This worm successfully
defaced tens of thousands of Web sites on December 21 of 2004. Depending on
the thread model of the vulnerable target server, one of the following actions will
happen:

 *

 A new thread is created at the start of the server.
 *

 A new thread is created upon each incoming request.

Furthermore, depending on the context of the hijacked thread, the worm

 *

 Runs in SYSTEM context with high privileges.
 *

 Runs in the context of a user with either high or low privileges that the worm
might be able to escalate.

These preconditions are often reflected in the worm's operation. When, for
example, W32/Slammer exploits a vulnerable Microsoft SQL server, the worm
hijacks a thread that was executed at the start of the server. Thus the operations
associated with the hijacked thread will be paralyzed because new incoming
requests will not be resolved. In addition, the server process and the entire
system is heavily overloaded because the worm never stops sending itself to
new targets.

An example of the second type of attack is W32/CodeRed. CodeRed exploits
Microsoft IIS server via a malformed GET request. When the server receives the
GET request, it executes a new thread to process it. The worm hijacks that
particular thread and creates 100 new threads (300 in some variants) in the
vulnerable server process. This kind of computer worm needs to avoid infecting
the target a second time because the worm could exploit the target multiple
times, causing the target to be overloaded shortly after the initial outbreak. In
addition, computer worms that counterattack each other can also benefit from
this condition because they can utilize the same exploit as their opponent.

Both of these attacks are detailed in Chapter 10 from the point of view of
exploitation. Figure 9.9 illustrates this.

Figure 9.9
A typical one-way code injection attack.

In some cases, the injected code creates a new user account on the target that
can be used by the attacker to log in to the system remotely.

Another interesting example of a code injection attack is the W32/Lespaul@mm
worm. This worm takes advantage of a vulnerability in Eudora 5 that can be
exploited by sending a malformed boundary tag.

Lespaul is a mass-mailer worm, but just like CodeRed or Slammer, it injects its
code directly into the vulnerable Eudora 5 process. The worm does not send an
attachment to the recipient; instead, it propagates itself as the mail body. It can
appear in the Eudora mailbox as part of an e-mail message featuring an overly
long header field; however, its code is never saved into a standalone executable
at any point in order to be executed.
9.5.6 Shell Code–Based Attacks

Another class of computer worms utilize shell code on the target machine. The
basic idea is to run a command prompt on the remote system, such as cmd.exe
(on Windows) or /bin/sh (on UNIX) via the exploit code. Consider Figure 9.10 for
an illustration.

Figure 9.10
A typical shell code–based attack.

The worm follows these steps:

 1.

 It injects code into a remote process and binds a specific port to the process.
The exploited process starts to listen on the port.
 2.

 The worm attempts to connect to the listening port.
 3.

 If the connection to the port is successful, the previously injected shellcode
executes a command prompt and binds that process to the same port that the
attacker is using.
 4.

 Finally, the worm can start to send commands to the shell.

An example of such a worm is W32/Blaster.

Shellcode-based attacks are typically more common on UNIX systems than on
Windows systems. A few variations exist, such as back-connecting shellcode and
shellcode that reuses an existing connection.

Back-connecting shellcode immediately attempts to connect the target with the
attacker by establishing a TCP connection from the target to the attacker's
machine. The advantage of this method is that it allows machines behind a
firewall to "connect-out" to the attacker system.

This attack requires the attacker system to listen on a particular port and wait for
the shellcode to connect, as shown in Figure 9.11.

Figure 9.11
A back-connecting shellcode.

The basic difference occurs in the second step. The shellcode executes on the
target and connects to the attacker. When the connection is established, the
shellcode creates a shell prompt that gets its input from the attacker. The
W32/Welchia worm uses this approach.

The exploiting phase might take place in a few steps. For example, Linux/Slapper
exploits the target more than once to run shellcode via a heap overflow condition.
Slapper, however, implements yet another shell-code technique, reusing the
connection established between the attacker's machine and the target. As shown
in Figure 9.12, the shellcode does not need to reconnect to the target. In Chapter

15 you can find a traced shellcode of Slapper that illustrates the reused
connection better.

Figure 9.12
A connection-reusing shellcode.
9.6 Update Strategies of Computer Worms

Computer worms can be classified according to their update strategies. An early
example of this is W95/Babylonia, a Windows Help and PE infector and self-
mailer that was discovered on December 6, 1999.

Babylonia was posted to the alt.crackers Internet newsgroup as a Windows Help
file named serialz.hlp31, which appeared to be a list of serial numbers for
commercial software. This Help file was launched by many people who activated
the virus on their systems. When executed, the virus creates a downloader
component that looks for updates on a Web site. (Figure 9.13 illustrates this.)

First, the downloader reads the content of a text file called virus.txt stored on the
Web site. This text file lists a few filenames, such as dropper.dat, greetz.dat,
ircworm.dat, and poll.dat. These files use a special plug-in file format with a
header that starts with the identifier VMOD (which stands for virus module). The
header of the virus modules contains an entry point of the module and, using this
information, the downloader component of Babylonia downloads and executes
the plug-in modules inside its own process, one by one.

Figure 9.13
The update procedure of Babylonia.

 *

 The dropper.dat module can reinstall the virus code on the system. This can
be used by the attacker to update the virus with a newer release or to reinfect an
already cleaned system via the downloader.
 *

 The greetz.dat module is the payload. It modifies the c:\autoexec.bat file to
display a message, shown in Listing 9.7, in January of each year.
 *

 The ircworm.dat module is an mIRC worm installer that infects other targets
via an mIRC.
 *

 The poll.dat module is used to track the number of infected machines. When
it is used, it sends messages to babylonia_counter@hotmail.com, with the

Portuguese message "Quando o mestre chegara?" ("When will the master
arrive?")

Listing 9.7 The Babylonia Worm's Message

W95/Babylonia by Vecna (c) 1999
Greetz to RoadKil and VirusBuster
Big thankz to sok4ever webmaster
Abracos pra galera brazuca!!!

Eu boto fogo na Babilonia!

Not only is Babylonia able to infect two different Windows file formats, it also
infects WSOCK32.DLL, allowing it to send e-mails with an attachment whenever
the user sends mail. Babylonia somewhat borrows this idea from Happy99.

The weakness of the attack is the update system based on a single Web site.
After authorities pulled the site, Babylonia could not download new components.
9.6.1 Authenticated Updates on the Web or Newsgroups

Realizing the weaknesses of a single Web site–based update system, Vecna
decided to use alternated update channels and strong cryptography to
authenticate the updates. The W95/Hybris worm was released in late 2000. It
was an unusually large project of several top virus writers from around the world:
Brazilian, Spanish, Russian, and French virus writers were all part of the large
team that developed it.

Hybris uses 1,023-bit RSA signing32 to deliver its update modules to infected
systems. It also uses a 128-bit hash function to protect the updates against
attacks. The hash function uses XTEA (extended tiny encryption algorithm, which
is a successor of TEA). XTEA is in the public domain, written by David Wheeler
and Roger Needham. The RSA library for Hybris was written by the infamous
Russian virus writer, Zombie. Figure 9.14 is an illustration of the Hybris attack.

Note the interesting selection for XTEA instead of TEA, which was previously
found weak by cryptographers John Kelsey, Bruce Schneier, and David Wagner
many years ago at CRYPTO 1996. In fact, TEA was used as a hash function in
the security of the second version of the Microsoft Xbox. This weakness was
leveraged a day later after its announcement by a team headed by Andy Green
to break the security of the Xbox scheme by flipping bits in Xbox's FLASH ROM
code that allowed a jump instruction to branch to RAM33.

Figure 9.14
The authenticated updates model of the Hybris worm.

The idea of the Hybris worm is to encrypt the updates with XTEA and sign the
update files with RSA on the attacker's system. The attacker creates a secret key
and a corresponding public key. He puts the public key into the virus, and the
XTEA encryption/decryption keys are delivered with the module—but are signed
with a 1,023-bit RSA secret key. This is called a hybrid signing technique, which
makes the process more efficient.

Instead of using a single 128-bit key, Hybris uses 8 XTEA keys, one of which is a
hash computed about the plug-in and 7 other 128-bit keys that are set randomly.
First, a 128-bit hash of the module is calculated using XTEA. This value will be
used as one of eight 128-bit encryption keys to encrypt the entire module using a
64-bit XTEA block cipher. The block cipher applies the eight 128-bit keys
(including the hash of the plug-in) to each consecutive 64-bit block of the plug-in.
Each 64-bit block is encrypted with one 128-bit key. Thus the first 64-bit block is
encrypted with the first key in the set, the second 64-bit block is encrypted with
the second 128-bit key (the hash) until the keys wrap around: The 9th block is
encrypted with the first key again, and so on.

Signing allows the worm instances to check if the update files were distributed by
the virus writer. Thus the RSA algorithm is used to prevent changes to plug-ins or
to create new plug-ins without specifically involving the attacker who holds the
secret key. The worm uses the public key corresponding to the secret key of the
attacker to validate the signed XTEA key and verifies that the hash is correct to
avoid forgery attacks.

Although the updates are encrypted, the algorithm uses a symmetric key so the
modules can be decrypted by anyone, in the same way as the worm decrypts
them. The attacker is protected against any manipulations that could occur to
update modules. Thus it is not feasible to distribute an update that could kill the
worm without the secret key of the virus author unless, of course, there is some
implementation error discovered that commonly occurs in cryptography.

There were up to 20 known modules (so-called Muazzins) for Hybris. However,
there were more than 32 different versions of these in circulation. After
encrypting and signing the module, the attacker encoded the module to send it to
the alt.comp.virus newsgroup. Infected systems, which were all looking for the
modules, downloaded and decrypted them using their public keys.

Although the initial update Web site was quickly disabled, the attacker had the
opportunity to send out new updates in newsgroups. Infected nodes propagated
the modules back to the newsgroups, so all infected nodes had a chance to get
the updates. Hybris used a similar technique to the Happy99 worm's algorithm to
inject its code into the WSOCK32.DLL library, propagating itself via e-mail.

The update modules included several extensions to the worms:

 *

 A DOS EXE file infection module.
 *

 A file infection module to attack PE files without changing their size and CRC
16/32/48 checksum. This module used compression to compress the host and
filled the module with extra data, using the algorithm of the Russian virus writer,
Zhengxi, to make the CRC the same as it was before the infection.
 *

 A wrapper module to encrypt the Hybris-infected WSOCK32.DLL further.
 *

 A Windows Help file infection module. (This module borrows code from
W95/Babylonia.)
 *

 A PE file infection module using Zombie's KME polymorphic engine.
 *

 Two archive infection modules to infect RAR, ZIP, and ARJ archives.
 *

 Two different plug-in modules to infect Microsoft Word documents and a third
module to infect Microsoft Excel documents.
 *

 A DoS attack module.
 *

 An encrypted dropper generator module.
 *

 An attacker module to infect machines via a SubSeven backdoor.
 *

 A HATE (human-alike text engine) message module; this particular module
could generate e-mail messages in the names of well-known antivirus
researchers such as Eugene Kaspersky, Mikko Hypponen, and Vesselin
Bontchev. My name was also on the list. The module was supposed to send e-
mail messages using one of my e-mail addresses in the sender field with the
subject "Uglier than Hermann Monster!" (most likely a reference to Herman
Munster) with the attachment named "The Hungarian Freak!.exe."

 Note - This module was written by the Spanish virus writer, Mr. Sandman,
the founder of the 29A virus writing group, who is believed to be a professional
translator. Many other viruses of Mr. Sandman's are related to his interest in
languages, for example Esperanto and Haiku.

 *

 A retro attack module to block access to antivirus Web sites.
 *

 Another e-mail message generator using a SOAP Web server to generate
fortune cookie messages and send these (with Hybris) to recipients.
 *

 A sys file infection routine to hide the infected WSOCK32.DLL on the system
with stealth routines.
 *

 An exploit module that can be used to retrieve files from vulnerable Web
servers.
 *

 Another retro attack to scan the disk and Registry for antivirus programs and
delete them or corrupt their databases.
 *

 An e-mail-based tracker module to send e-mail messages from infected
nodes to a particular e-mail account.
 *

 A few other generic message generator modules for e-mail propagation.
 *

 A Happy 2000 module. This one overwrites the SKA.EXE file of the Happy99
worm to propagate Hybris instead. It also contains the graphical payload of the
Happy99 worm.
 *

 A module to download additional plug-in modules from Web sites.
 *

 A Usenet module to connect to NNTP servers and download plug-ins. This
module also uploads other modules to a newsgroup.
 *

 Finally, an OpenGL-based animation that installed itself to load at boot time.
This module, shown in Figure 9.15, was contributed by the French virus writer,
Spanska.

Figure 9.15
The OpenGL-based hypnotizer spiral plug-in.

Listing 9.8 is an example of a plug-in module posted to the alt.comp.virus
newsgroup34.
Listing 9.8 A Hybris Update in alt.comp.virus (Partial Snippet)

Date: Tue, 24 Jul 2001 20:29:51 -0700
Newsgroups: alt.comp.virus
Subject: h_2k MRKR KRnAbIvQdE?UlOhK6CrWdU#YvYnM:SrYU

TRUTUWXXPTVFVY3NXSTREYCUSPVNBLZLSQBPXXRRYMUOD7USWESF
RWYBUTREMBLWKSPS
OXYVNWZG
KTVHVDMTTRODVSMCZFWCQXSXVVTZVUKVKHOBTRNFYVVBLFRBXWUV
RHWHPF

SE&THUFNVMHZCRHNVRVZUKXVWSBSBZRPB6NEVVYZLSVSLDLZZFZCY
CSWKDLUZVYR5ZYLZ
NDOSNUKRMUYXOHTEMUKD

The body of this message contains the Happy 2000 plug-in of Hybris (only a
snippet is shown in Listing 9.8). The name of the plug-in is in the Subject line as
"h_2k," which is followed by the version number information of the plug-in. Hybris
uses the version information to decide whether a module needs to be extracted
and executed.
9.6.2 Backdoor-Based Updates

Several computer worms open up a port on the compromised system and
implement an interface to execute arbitrary files on the compromised machine.
The attacker can use this interface to update the worm's code from one version
to another. For instance, the W32/Mydoom worm opens a TCP port in the range
of 3127 to 3198 and waits for a connection, implementing a simple protocol.
Essentially, Mydoom's code is updated similarly to a backdoor-based
propagation technique described earlier in this chapter. The attacker needs to
scan for systems that have a port open and can send an executable to the target
that will be executed on the remote node. The first few versions of Mydoom did
not implement any security mechanism for their update protocol. Not surprisingly,
worms such as W32/Doomjuice, W32/Beagle, and W32/Welchia attacked
Mydoom-compromised systems by taking advantage of the insecure update
mechanism.

Later releases of Mydoom leave less chance for opportunistic attackers because
they inspect incoming requests more carefully.
9.7 Remote Control via Signaling

Attackers often want to control their creations remotely, for example, to execute a
DoS attack against a selected target or to control the propagation of the worm to
new systems. The most obvious technique is based on the use of a backdoor
feature built into the worm that communicates directly with a particular host.
However, other known techniques centrally control the worm, such as via IRC or
Windows domain mail-slots. Consider Figure 9.16, which illustrates the attacks of
W32/Tendoolf.

Figure 9.16
The remote-controlled Tendoolf worm.

Some of the variants of this worm only propagate the infection to new targets
whenever the attacker sends a ".spread" signal to an IRC server into a
discussion channel of the worm itself. When the attacker sends the ".spread"
signal, the already compromised systems look for new targets to infect.
Techniques include e-mail, instant messaging, and SubSeven backdoor-
compromised nodes attack. In addition, the attacker can execute a DoS attack
against any target. The target of the DoS attack is unknown to the compromised
systems (it is not hard-coded in the worm) until the attacker sends the command.
Then the compromised nodes turn against the specified target and execute
various kinds of flooding methods. Hence the name of the worm, which is
Floodnet spelled backwards.

This kind of remote control–based worm propagation is often confusing for junior
antivirus researchers.
9.7.1 Peer-to-Peer Network Control

Some computer worms implement a virtual network between infected nodes to
establish communication and control operations. The Linux/Slapper worm is an
example of this kind of computer worm. Slapper uses the UDP protocol and port
2002 on each infected node. When the worm infects a new target, it passes the
attacker's IP address to the target system. Then each node receives the IP
addresses of all other nodes and keeps these in a list. Whenever a new IP
address is introduced, all other nodes receive the update via this special virtual
network, which uses TCP-like (stateful) features to ensure that the information
arrives at the target correctly. The infected nodes select a random set of other
machines to broadcast the updated information on the network. This is called a
broadcast segmentation technique.

The remote control interface of Linux/Slapper is very advanced. The code is
borrowed from the BSD/Scalper worm, which was based on a previous attacker

tool. Just like Scalper, Slapper implements a hierarchical network structure35
that keeps track of systems the worm has infected. Slapper supports a large set
of commands that implement UDP flood, TCP SYN flood, IPv6 SYN flood, and
DNS standard query flood DoS attacks; it also supports the execution of arbitrary
commands on the compromised nodes.

Consider Figure 9.17 for a possible illustration of a Slapper worm infection. When
the first node is infected, it receives the IP address of the attacker host, followed
by the list of all other nodes that are in the network, and so on.

Figure 9.17
A Slapper worm infection.

Figure 9.17 only illustrates how the infection is passed from one system to the
next. Figure 9.18 is a possible way to illustrate the hierarchical relationships
between the infected nodes as a P2P command network. Because more than
one initial infection might be started by the attacker, there might be multiple
smaller and larger P2P networks parallel to each other without any connection,
similar to the configuration shown in Figure 9.18.

Figure 9.18
Slapper worm P2P network hierarchy.
9.8 Intentional and Accidental Interactions

Computer virus researchers have observed a set of interesting behaviors that are
the result of intentional and accidental interactions between various kinds of
malicious code. This section describes common interactions.
9.8.1 Cooperation

Some computer viruses accidentally cooperate with other malicious code. For
example, computer worms might get infected with a standard file infector virus as
they pass through already infected nodes. It is common to encounter multiple
infections on top of in-the-wild computer worms. It is not uncommon to find three
or even more different viruses on the top of a worm carrier. This can help both
the network worm and the standard file infector virus in various ways.

A worm can take advantage of the infection of an unknown file infector virus. If
the file infector virus is unknown to antivirus products, the computer worm body
might not be detectable. For example, in some cases the worm body will be
embedded deep inside the virus code, leaving little chance for the antivirus
program to find it. See Figure 9.19 for an illustration.

In Step A, the computer becomes infected with a worm. In Step B, the worm
successfully penetrates a new remote system. That computer, however, is
already infected with a virus that infects exactly the same type of files in which
the worm propagates itself. Thus the file infector virus attaches itself to the worm.

In Step C, the multiple infection arrives at a new computer. When the worm is
executed, the file infector virus runs (in most cases, it will run before the worm's
code) and infect other objects.

In Step D, the combination arrives at a system protected by antivirus software
that knows the file infector virus on top of the computer worm carrier—but does
not know the computer worm underneath. If the antivirus can disinfect the file
infector virus, it might create a file object that is not exactly the same as the
original worm. For example, the binary file of the worm might get larger or
smaller, and important fields in its header might also change. (Of course, an
antivirus is just one possible agent that might interact with other malicious
programs.)

Thus a "mutant" worm will have the chance to propagate itself further and infect a
new system in Step E. In practice, no antivirus software would consider the Step
E case a variant of the original worm. However, antivirus programs need to
address this issue. For example, the MD5 checksums of the "mutant" worm body
are clearly different, and if the antivirus or content-filtering software uses such
checksums to detect the original worm, it will fail to detect the "mutant" worm.

Figure 9.19
The accidental interaction of a worm infected with a file infector virus.

An intentional variation of such cooperation appeared in the "symbiosis project"
of GriYo. He released the mass-mailing worm, W32/Cholera, in infected form.
The worm was infected with the polymorphic W32/CTX virus and became a
carrier. The result was a quick succession of both W32/Cholera and W32/CTX
infections worldwide. As a result, W32/CTX was reported on the Wildlist.

File infector viruses such as W32/Funlove often infect other worms and often
multiple times. Such file infector viruses occasionally disappear from the top 50
charts but suddenly attack again during major computer worm outbreaks. This
kind of activity was seen increasingly when the W32/Beagle worm appeared in
the wild. As discussed earlier, some variants of Beagle send a password-
protected attachment to recipients. Because the worm creates the archive (ZIP)
file on the local system, the executable file of the worm can easily get infected by
viruses such as Funlove before the executable gets packed. Thus a virus like
Funlove also enjoys being password-protected36. Because several antivirus
softwares had problems detecting the password-protected attachments reliably,
"traveler viruses" could take advantage of this accidental cooperation.

A form of cooperation also exists with the previously mentioned W32/Borm
creation, which infects Back–Orifice-compromised systems. W32/Borm does not
attempt to kill Back Orifice; it simply takes advantage of compromised systems to
propagate. Similarly, the aforementioned Mydoom had a backdoor that was
utilized by the Doomjuice worm to spread itself.

With macro and script viruses, "body snatching" attacks often occur. Two or more
script or macro viruses might form a new creation as they accidentally propagate
each other's code.
9.8.2 Competition

Competition between malicious codes was also experienced among computer
viruses. Several viruses attack other viruses and disinfect them from the systems
that they have compromised. An example of this is the Den_Zuko boot virus37,
which disinfects the Brain virus. These viruses are often called "benefical
viruses" or "antivirus" viruses.

Antiworm computer worms started to become more popular in 2001 with the
appearance of the CodeRed worm and the counterattacking, CodeGreen.
(However, antiworm worms had been experienced previously on other platforms,
such as Linux.)

Because IIS could be exploited more than once, CodeGreen could easily attack
CodeRed-infected systems. The worm sent a similarly malformed GET request to
the remote target nodes to CodeRed, which had in front the message shown in
Listing 9.9.
Listing 9.9 The Front of a CodeGreen GET Request

GET /default.ida?Code_Green_<I_like_the_colour-_-><AntiCodeRed-
CodeRedIII-IDQ_Patcher>_V1.0_beta_written_by_'Der_HexXer'-
Wuerzburg_Germany-_is_dedicated_to_my_sisterli_'Doro'.
Save_Whale_and_visit_<http://www.buhaboard.de>_and_http://www.buha-
security.de

The worm also carried the following messages shown in Listing 9.10.
Listing 9.10 Other Messages of the CodeGreen Worm

HexXer's CodeGreen V1.0 beta CodeGreen has entered your system
it tried to patch your system and
to remove CodeRedII's backdoors

You may uninstall the patch via
SystemPanel/Sofware: Windows 2000 Hotfix [Q300972]

get details at "http://www.microsoft.com".
visit "http://www.buha-security.de

CodeGreen removed the CodeRed infections from systems and also removed
the backdoor components of other CodeRed variants. Furthermore, it
downloaded and installed patches to close the vulnerability.

Similar attacks against W32/Blaster worm were experienced when the
W32/Welchia worm began its antiworm hunt against Blaster, which started the
"worm wars" (as I decided to call it after Core Wars).

Another enthralling example is the W32/Sasser worm. Sasser targeted an
LSASS vulnerability that was previously exploited by variants of Gaobot worm.
Thus Gaobot's author was not impressed because Gaobot needed to compete
with Sasser for the same targets. Consequently, the W32/Gaobot.AJS38 worm
was developed with a vampire attack. I decided to call this kind of attack a
"vampire" based on the Core War vampire attack. Vampire warriors can steal
their enemies' souls (see Chapter 1, "Introduction to the Games of Nature," for
details).

Gaobot.AJS is a vampire because it attacks Sasser when the two worms are on
the same machine. Instead of simply killing Sasser, Gaobot.AJS modifies
Sasser's code in a very tricky way. As a result of the modification, Sasser can still
scan for new targets and even exploit them successfully. However, when Sasser
connects to its shellcode on the compromised system to instruct it to download
and execute a copy of Sasser via FTP, the code modifications of Gaobot.AJS will
get control. In turn, Gaobot.AJS sends commands to Sasser's shellcode on the
remote machine and instructs it to download a copy of Gaobot.AJS's code
instead of Sasser's. Furthermore, Gaobot closes the connection to the remote
machine so Sasser cannot propagate but is used as a Gaobot propagation agent
in a parasitic manner.

Another gripping example is the W32/Dabber worm, which appeared right after
Sasser. As mentioned, Sasser's shellcode is instructed to download a copy of
Sasser via FTP. On the attacker system, Sasser implements a crude FTP server.
However, this routine of Sasser had a simple buffer overflow vulnerability that
could be exploited. (Indeed, worms can have their own vulnerabilities!) Dabber
was released to exploit Sasser's vulnerability to propagate itself. It scans for
targets that were compromised by Sasser and attempts to connect to Sasser's
vulnerable "FTP server" to exploit it successfully.

It is expected that competitions between malicious programs will become more
and more common in the future.
9.8.3 The Future: A Simple Worm Communication Protocol?

Although increased competition among malicious programs is likely, it also
makes sense for attackers to invest in cooperating techniques. For example,
computer worms could use a special protocol such as simple worm
communication protocol (SWCP) to exchange information, as well as plug-ins
("genes") among different families of computer worms that support SWCP.
Computer worms could swap payloads, exchange information about systems to
attack, or even collect e-mail addresses and share them with the other worms

that occasionally communicate using SWCP. I highly anticipate that such
techniques will appear in the very near future.

Of course, communication can have other forms. For instance, viruses could
"reproduce sexually"39 to cross their genomes to produce offspring, which can
evolve or devolve. The closest currently known example of accidentally "sexually
reproducing" computer viruses can be found in macro viruses which occasionally
swap, or snatch their macros ("genes") as discussed in Chapter 3, "Malicious
Code Environments,". However, specifically written binary viruses could possibly
demonstrate similar behavior that would lead to further evolution in computer
viruses on their own.
9.9 Wireless Mobile Worms

The SymbOS/Cabir worm40 indicates a totally new era of computer worms that
will slowly become more popular as wireless smart phones replace current
mobile phone systems, which have limited programming ability. The Cabir worm
appeared in June 2004, and it has a number of unique features. This worm can
run on Nokia 60 series phones running the Symbian operating system. The
Symbian operating system is based on the EPOC. In fact, Symbian is EPOC
version 6, also called EPOC32, but has a new name.

Interestingly, the Cabir worm spreads using the Bluetooth feature of wireless
phones as shown in Figure 9.20.

Figure 9.20
The attacker phone is on the left, and the recipient is on the right.

The worm's code is compatible with mobile phones using ARM series processors
with Symbian operating system. Normally, by default the Bluetooth
communication feature is off on mobile phones. Mobile phone users might
exchange some little programs, and in doing so they open up the Bluetooth
communication channel to Cabir-like worms as well.

When executed, Cabir installs itself into several directories of the Symbian OS
intending to make sure it will run each time the user boots the phone.
Fortunately, this operation is disallowed in newer phone models. However, on
older phones, worm components cannot be easily found without using custom file
manager applications. Cabir does not enumerate Bluetooth devices; instead, it
tries to find only the first such device and communicates with that device. The
standard Bluetooth range is about 30 feet, and apparently not all Bluetooth
devices like to communicate with each other. (However, researchers such as
Mark Rowe are experienced with Bluetooth signal amplification and pointed out
that attackers could utilize such technology to extend the Bluetooth range to
about 300 feet, reliably.) In addition, researchers such as Ollie Whitehouse of
@stake also demonstrated that Bluetooth devices are discoverable even in the
so-called "non-discoverable" mode41. Several Bluetooth-related attack tools

exist today including the most popular Bluesniff, Btscanner, PSMscan, and
Redfang.

During the natural infection tests, Cabir first talked to a Bluetooth printer, which
strangely acted as a "sticky" honeypot system and blocked the worm given that
the printer did not support the Object Exchange (OBEX) protocol that is required
to send a file. However, the worm successfully infected another phone as soon
as I turned the Bluetooth printer off. Cabir is overly active in finding other phones
and that can easily drain the battery of the phone similarly to natural situations
when your phone is hopelessly attempting to find a provider without finding one
in range.

A further problem is that you need to "hide" with mobile phones when you test
replicate worms. Although the recipient needs to accept the incoming message to
successfully receive the message, you do not want to infect another phone "by
accident." In fact, there are several known vulnerabilities of Bluetooth systems,
and some of these can be utilized to execute arbitrary code on Pocket PC
devices42, while others can be used to implement phishing attacks on a number
of smart phones types43.

Sure enough, in the future you can expect that worms are going to make phone
calls from your mobile phone instead of you. There might be a new era of MMS-
(Multimedia Messaging Service) based mass mailer worms as well as SMS-
(Short Messages Services) based downloaders, porn dialers, and spammer
applications, as well. Who is going to pay the bill?
References

 1.

 Dr. Vesselin Bontchev, personal communication, 2004.
 2.

 Nick FitzGerald, "When Love Came to Town," Virus Bulletin, June 2000, pp.
6-7.
 3.

 Donn Seeley, "A Tour of the Worm," USENIX Conference, 1989, pp. 287-
304.
 4.

 Frederic Perriot and Peter Szor, "An Analysis of the Slapper Worm Exploit,"
Symantec Security Response, White Paper, April 2003,
http://www.sarc.com/avcenter/whitepapers.html.
 5.

 "The Cheese Worm," CERT Incident Note IN-2001-05,
http://www.cert.org/incident_notes/IN-2001-05.html.
 6.

 "The sadmind/IIS worm," CERT Advisory CA-2001-11,
http://www.cert.org/advisory/CA-2001-11.html.
 7.

 Alexsander Czarnowski, "Distributed DoS Attacks—Is the AV Industry
Ready?" Virus Bulletin Conference, 2000, pp. 133-142.
 8.

 Ido Dubrawsky, "Effects of Worms on Internet Routing Stability," Security
Focus, June 2003, http://www.securityfocus.com/infocus/1702.
 9.

 Frederic Perriot, "Crack Addict," Virus Bulletin, December 2002, pp. 6-7,
http://www.virusbtn.com/resources/viruses/indepth/opaserv.xml.
 10.

 National Bureau of Standards, "Data Encryption Standard," FIPS Publication
46, U.S. Department of Commerce, 1977.
 11.

 Electronic Frontier Foundation, "Cracking DES," Sebastopol, CA, 1998,
ISBN: 1-56592-520-3 (Paperback).
 12.

 Dr. Steve R. White, "Covert Distributed Processing with Computer Viruses,"
Advances in Cryptology—CRYPTO '89, Springer-Verlag, 1990, pp. 616-619.
 13.

 Vesselin Bontchev, "Anatomy of a Virus Epidemic," Virus Bulletin
Conference, 2001, pp. 389-406.
 14.

 Eugene H. Spafford, "The Internet Worm Program: An Analysis," 1988.
 15.

 Katrin Tocheva, "Worming the Internet—Part 2," Virus Bulletin, November
2001, pp. 12-13.
 16.

 Peter Ferrie, "Sleep-Inducing," Virus Bulletin, April 2003, pp. 5-6.
 17.

 Katrin Tocheva, Mikko Hypponen, and Sami Rautiainen, "Melissa," March
1999, http://www.f-secure.com/v-descs/melissa.shtml.
 18.

 Peter Ferrie, "Magisterium Abraxas," Virus Bulletin, May 2001, pp. 6-7.
 19.

 Gabor Szappanos and Tibor Marticsek, "Patriot Games," Virus Bulletin, July
2004, pp. 6-9.
 20.

 Peter Ferrie and Peter Szor, "Sircamstantial Evidence," Virus Bulletin,
September 2001, pp. 8-10.
 21.

 Dmitry O. Gryaznov, "Virus Patrol: Five Years of Scanning the Usenet," Virus
Bulletin Conference 2002, pp. 195-198.
 22.

 Peter Szor, "Parvo—One Sick Puppy?" Virus Bulletin, January 1999, pp. 7-9.
 23.

 Atli Gudmundsson and Andre Post, "W32.Toal.A@mm,"
http://securityresponse.symantec.com/avcenter/venc/data/w32.toal.a@mm.html.
 24.

 Peter Szor, "Happy Gets Lucky?" Virus Bulletin, April 1999, pp. 6-7.
 25.

 Stuart McClure, Joel Scambray, and George Kurtz, "Hacking Exposed:
Network Security Secrets and Solutions," 3rd Edition, Osborn/McGraw-Hill,
Berkeley, 2001, ISBN: 0-07-219381-6 (Paperback).
 26.

 Vern Paxson, Stuart Staniford, and Nicholas Weaver, "How to 0wn the
Internet in Your Spare Time," http://www.icir.org/vern/papers/cdc-usenix-sec02/.
 27.

 Neal Hindocha and Eric Chien, "Malicious Threats and Vulnerabilities in
Instant Messaging," Symantec Security Response, White Paper, October 2003,
http://www.sarc.com/avcenter/whitepapers.html.
 28.

 "Buffer Overflow in AOL Instant Messenger," http://www.cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2002-0005.
 29.

 Sergei Shevchenko, "W32.Taripox.A@mm," February 2002,
http://securityresponse.symantec.com/avcenter/venc/data/w32.taripox@mm.html
.
 30.

 Katrin Tocheva and Erdelyi Gergely, "Aplore," April 2002, http://www.f-
secure.com/v-descs/aplore.shtml.
 31.

 Marious van Oers, "Digital Rivers of Babylonia," Virus Bulletin, February
2000, pp. 6-7.
 32.

 Ronald L. Rivest, Adi Shamir, and Leonard Adleman, "A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems," Communications of
the ACM, v-21, n-2, February 1978, pp. 120-126.
 33.

 Andrew "bunnie" Huang, "Hacking the Xbox," Xenatera LLX, San Francisco,
2003, ISBN: 1-59327-029-1.
 34.

 Nick Fitzgerald, personal communication, 2001.
 35.

 Sen Hittel, "Modap OpenSSL Worm Analysis," Security Focus, September
16, 2002.
 36.

 Dr. Igor Muttik, personal communication, 2004.
 37.

 Vesselin Bontchev, "Are 'Good' Computer Viruses Still a Bad Idea?" EICAR,
1994, pp. 25-47.
 38.

 Heather Shannon, Symantec Security Response, personal communication,
2004.
 39.

 Edward Fredkin, "On the Soul," 2000, Draft Paper,
http://www.digitalphilosophy.org/on_the_soul.htm.
 40.

 Peter Ferrie and Peter Szor, "Cabirn Fever," Virus Bulletin, August 2004, pp.
4-5, http://pferrie.tripod.com/vb/cabir.pdf.
 41.

 Ollie Whitehouse, "Redfang: The Bluetooth Device Hunter," 2003.
 42.

 "WIDCOMM Bluetooth Communication Software Multiple Buffer Overflow
Vulnerabilities," http://www.securityfocus.com/bin/10914/discussion.
 43.

 "Bluetooth Information Disclosure Vulnerability,"
http://www.securityfocus.com/bin/9024/discussion.

